Der Unterschied der \(t\)-Verteilung zur Standardnormalverteilung ist, dass es viele verschiedene \(t\)-Verteilungen gibt – eine für jeden Freiheitsgrad \(df\).
Daher findet man aus Platzgründen in Büchern und Klausuren nie eine seitenlange Auflistung von je einer vollständigen Verteilungstabelle für jeden Freiheitsgrad, sondern nur die wichtigsten Quantile in einer Spalte.
Die verbreitete Schreibweise ist für ein t-Quantil dann z.B. \(t_{0.975}(4)\). Das ist das 97,5%-Quantil der t-Verteilung mit 4 Freiheitsgraden. Für dieses Quantil sind die folgenden Aussagen alle wahr und gleichbedeutend:
- 2,5% der Fläche der Dichte der \(t\)-Verteilung mit 4 Freiheitsgraden (ab jetzt \(t(4)\)-Verteilung genannt) liegen rechts von 2,776.
- 2,5% der Fläche der Dichte der \(t(4)\)-Verteilung liegen links von -2,776.
- 95% der Fläche der Dichte der \(t(4)\)-Verteilung liegen im Intervall [-2,776; 2,776].
- Eine \(t(4)\)-verteilte Zufallsvariable wird mit 95% Wahrscheinlichkeit im Intervall [-2,776; 2,776] liegen.
- Das 97,5%-Quantil der \(t(4)\)-Verteilung ist 2,776.
Die folgende Grafik visualisiert diese 2,776.
Versuche zur Übung, den Wert 2,776 in der unten stehenden Verteilungstabelle wiederzufinden! Du brauchst das 97,5%-Quantil (also das 0.975-Quantil) der t-Verteilung mit 4 Freiheitsgraden!
Wenn man versteht, dass all diese Sätze äquivalent sind, dann kann man gut mit der Verteilungstabelle umgehen. Die Zeit dafür zu investieren, zahlt sich in der Klausur mit Sicherheit aus.
Anzahl Freiheitsgrade (\(df\)) | Entsprechende Irrtumswahrscheinlichkeit \(\alpha\) bei zweiseitigem Test | |||||||
---|---|---|---|---|---|---|---|---|
0,5 | 0,25 | 0,2 | 0,1 | 0,05 | 0,02 | 0,01 | 0,002 | |
Quantil der \(t\)-Verteilung | ||||||||
0,75 | 0,875 | 0,90 | 0,95 | 0,975 | 0,99 | 0,995 | 0,999 | |
1 | 1,000 | 2,414 | 3,078 | 6,314 | 12,706 | 31,821 | 63,657 | 318,309 |
2 | 0,816 | 1,604 | 1,886 | 2,920 | 4,303 | 6,965 | 9,925 | 22,327 |
3 | 0,765 | 1,423 | 1,638 | 2,353 | 3,182 | 4,541 | 5,841 | 10,215 |
4 | 0,741 | 1,344 | 1,533 | 2,132 | 2,776 | 3,747 | 4,604 | 7,173 |
5 | 0,727 | 1,301 | 1,476 | 2,015 | 2,571 | 3,365 | 4,032 | 5,893 |
6 | 0,718 | 1,273 | 1,440 | 1,943 | 2,447 | 3,143 | 3,707 | 5,208 |
7 | 0,711 | 1,254 | 1,415 | 1,895 | 2,365 | 2,998 | 3,499 | 4,785 |
8 | 0,706 | 1,240 | 1,397 | 1,860 | 2,306 | 2,896 | 3,355 | 4,501 |
9 | 0,703 | 1,230 | 1,383 | 1,833 | 2,262 | 2,821 | 3,250 | 4,297 |
10 | 0,700 | 1,221 | 1,372 | 1,812 | 2,228 | 2,764 | 3,169 | 4,144 |
11 | 0,697 | 1,214 | 1,363 | 1,796 | 2,201 | 2,718 | 3,106 | 4,025 |
12 | 0,695 | 1,209 | 1,356 | 1,782 | 2,179 | 2,681 | 3,055 | 3,930 |
13 | 0,694 | 1,204 | 1,350 | 1,771 | 2,160 | 2,650 | 3,012 | 3,852 |
14 | 0,692 | 1,200 | 1,345 | 1,761 | 2,145 | 2,624 | 2,977 | 3,787 |
15 | 0,691 | 1,197 | 1,341 | 1,753 | 2,131 | 2,602 | 2,947 | 3,733 |
16 | 0,690 | 1,194 | 1,337 | 1,746 | 2,120 | 2,583 | 2,921 | 3,686 |
17 | 0,689 | 1,191 | 1,333 | 1,740 | 2,110 | 2,567 | 2,898 | 3,646 |
18 | 0,688 | 1,189 | 1,330 | 1,734 | 2,101 | 2,552 | 2,878 | 3,610 |
19 | 0,688 | 1,187 | 1,328 | 1,729 | 2,093 | 2,539 | 2,861 | 3,579 |
20 | 0,687 | 1,185 | 1,325 | 1,725 | 2,086 | 2,528 | 2,845 | 3,552 |
21 | 0,686 | 1,183 | 1,323 | 1,721 | 2,080 | 2,518 | 2,831 | 3,527 |
22 | 0,686 | 1,182 | 1,321 | 1,717 | 2,074 | 2,508 | 2,819 | 3,505 |
23 | 0,685 | 1,180 | 1,319 | 1,714 | 2,069 | 2,500 | 2,807 | 3,485 |
24 | 0,685 | 1,179 | 1,318 | 1,711 | 2,064 | 2,492 | 2,797 | 3,467 |
25 | 0,684 | 1,178 | 1,316 | 1,708 | 2,060 | 2,485 | 2,787 | 3,450 |
26 | 0,684 | 1,177 | 1,315 | 1,706 | 2,056 | 2,479 | 2,779 | 3,435 |
27 | 0,684 | 1,176 | 1,314 | 1,703 | 2,052 | 2,473 | 2,771 | 3,421 |
28 | 0,683 | 1,175 | 1,313 | 1,701 | 2,048 | 2,467 | 2,763 | 3,408 |
29 | 0,683 | 1,174 | 1,311 | 1,699 | 2,045 | 2,462 | 2,756 | 3,396 |
30 | 0,683 | 1,173 | 1,310 | 1,697 | 2,042 | 2,457 | 2,750 | 3,385 |
40 | 0,681 | 1,167 | 1,303 | 1,684 | 2,021 | 2,423 | 2,704 | 3,307 |
50 | 0,679 | 1,164 | 1,299 | 1,676 | 2,009 | 2,403 | 2,678 | 3,261 |
\(\infty\) | 0,674 | 1,150 | 1,282 | 1,645 | 1,960 | 2,326 | 2,576 | 3,090 |
Ich hab ein Freiheitsgrad von 38, wie lese ich nun den t-Wert ab?
Auf dieser Tabelle geht das leider nicht. Du kannst z.B. den Mittelwert aus der Zeile für df=30 und df=40 nehmen.
In der Praxis würde man ein Statistikprogramm befragen. In einer Klausur ist die relevante Zeile meist gegeben. 🙂